Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38248686

RESUMEN

This study explores the potential utilization of walstromite (BaCa2Si3O9) as a foundational material for creating new bioceramics in the form of scaffolds through 3D printing technology. To achieve this objective, this study investigates the chemical-mineralogical, morphological, and structural characteristics, as well as the biological properties, of walstromite-based bioceramics. The precursor mixture for walstromite synthesis is prepared through the sol-gel method, utilizing pure reagents. The resulting dried gelatinous precipitate is analyzed through complex thermal analysis, leading to the determination of the optimal calcination temperature. Subsequently, the calcined powder is characterized via X-ray diffraction and scanning electron microscopy, indicating the presence of calcium and barium silicates, as well as monocalcium silicate. This powder is then employed in additive 3D printing, resulting in ceramic scaffolds. The specific ceramic properties of the scaffold, such as apparent density, absorption, open porosity, and compressive strength, are assessed and fall within practical use limits. X-ray diffraction analysis confirms the formation of walstromite as a single phase in the ceramic scaffold. In vitro studies involving immersion in simulated body fluid (SBF) for 7 and 14 days, as well as contact with osteoblast-like cells, reveal the scaffold's ability to form a phosphate layer on its surface and its biocompatibility. This study concludes that the walstromite-based ceramic scaffold exhibits promising characteristics for potential applications in bone regeneration and tissue engineering.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234548

RESUMEN

As bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.

3.
J Funct Biomater ; 13(4)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36278649

RESUMEN

Mesoporous bioactive glass nanoparticles (MBGNs) are widely recognized for their ability to bond to hard tissue, while the ions released from the BG structure enhance specific cellular pathways. In this study, the SiO2-P2O5-CaO-MgO-ZnO system was used to successfully synthesize MBGNs by a microemulsion-assisted sol-gel method. The MBGNs calcinated at 600 °C/3 h had a typical phosphosilicate structure together with a poorly crystalline hydroxyapatite (HAp). The addition of ZnO not only led to a higher degree of crystallinity of HAp but also induced a higher porosity of the particles. All MBGNs had a mesoporous structure with an interconnected network of slit shape pores. For each type of composition, two families of highly dispersed spherical nanoparticles could be identified. In vitro tests in simulated body fluid (SBF) proved that after only 3 days of immersion all the materials were covered with a layer of brushite whose degree of crystallinity decreases in the presence of Zn2+. The antibacterial assay revealed a strong inhibitory effect for all samples after 40 h of contact. Simultaneously, MBGNs did not increase the intracellular oxidative stress while it stimulated the cell proliferation process.

4.
Polymers (Basel) ; 14(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890572

RESUMEN

The paper addresses the synthesis of a nano-fibre network by coaxial electrospinning, embedding the healing agent dicyclopentadiene (DCPD) in polyacrylonitrile (PAN) fibres. Compared to other encapsulation methods, the use of nano-fibres filled with healing agent have no effect on the mechanical properties of the matrix and can address a larger healing area. Additionally, carbon nanotubes were added as nanofillers to enhance the reactivity between DCPD and the epoxydic matrix. The self-healing capability of the nano-fibre network was carried out by flexural tests, at epoxy resin level and composite level. Results obtained from Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) confirmed the successful encapsulation of DCPD healing agent in PAN fibres. Flexural tests indicate that after 48 h, the epoxy resin has recovered 84% of its flexural strength while the composite material recovered 93%.

5.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163761

RESUMEN

The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/farmacología , Cerio/química , Gelatina/química , Hidrogeles/farmacología , Hidroxiapatitas/química , Metacrilatos/química , Osteoblastos/citología , Animales , Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Hidrogeles/química , Ratones , Osteogénesis , Polvos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
6.
Gels ; 7(4)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842680

RESUMEN

Bioglass (BG) is a class of biomaterials increasingly approached in biomedical applications, such as in regeneration of hard tissues, due to the properties of bioactivity, osteoinductivity, osteoconductivity, but also the high rate of biodegradation, both in vitro and in vivo. The present paper addresses the obtaining of bioglasses from the ZnO(MgO)-CaO-SiO2-P2O5 system by the sol-gel method and the use of a surfactant to ensure a specific surface or high open porosity, starting from S53P4 bioglass (53% SiO2, 23% Na2O, 20% CaO, 4% P2O5), also known as BoneAlive®. The precursor powders were analyzed from the phase composition point of view by complex thermal analysis and X-ray diffraction, the vitreous powders were assessed from the compositional point of view by X-ray diffraction, morpho-structural by scanning electron microscopy, specific surface area and the pore size dimension by the Brunauer-Emmett-Teller (BET) analysis, dispersion by laser granulometry, and also cell biology and surface mineralization tests were performed by immersion in SBF (simulated body fluid). The system proposed in this paper ZnO(MgO)-CaO-SiO2-P2O5 was successfully obtained by sol-gel method. The results showed the higher interaction between the samples and the SBF medium for samples containing magnesium (M2) and the lowest degree of mineralization after immersion in SBF was noticed for samples containing zinc (M1). The results also prove that by incorporating different ionic species in bioglass composition-Zn2+ and Mg2+, biocompatibility and antibacterial properties will be significantly enhanced.

7.
Polymers (Basel) ; 12(5)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375357

RESUMEN

The activities of this paper were focused on an in-situ fabrication process for producing two self-healing systems containing dicyclopentadiene and 5-ethylidene-2-norbornene monomers encapsulated in a urea-formaldehyde shell and integration methods applied in the epoxy matrix to analyse and compare the influences of their integration into the neat epoxy matrix. The self-healing systems were first synthesized according to a literature review, and subsequently, an optimization process was conducted for the fabrication process. Neat epoxy specimens were fabricated as reference specimens and subjected to flexural tests. Several integration methods for incorporating the self-healing systems into the epoxy resin were investigated. The optimal method presenting the best dispersion of the healing system was achieved by reducing the viscosity of the epoxy matrix with 10 vol % acetone solution, the addition of a microcapsule in the matrix, and homogenization at 60 °C at 100 rpm. Thermal analysis was performed in order to observe the mass loss obtained with an increasing temperature and phase changes for both poly-urea-formaldehyde (PUF)-dicyclopentadiene (DCPD) and melamine-urea-formaldehyde (MUF)-5-ethylidene-2-norbornene (ENB) systems. The thermogravimetric analysis performed for the PUF-DCPD system indicates a total loss of mass in the range of 30-500 °C of 72.604% and for the MUF-ENB system, indicates a total mass loss in the range of 30-500 °C of 74.093%. Three-point bending tests showed higher mechanical properties for PUF-DCPD (80%) than MUF-ENB (40%) compared to the neat epoxy systems. Numerical simulations were performed to obtain a better understanding of the microcapsule behavior when embedded in an epoxy matrix.

8.
Nanomaterials (Basel) ; 10(1)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936775

RESUMEN

In this paper, ZnO and Co2+/Mg2+-doped ZnO thin films on TiAlV alloy substrates were obtained. The films were deposited by spin coating of sol-gel precursor solutions and thermally treated at 600 °C for 2 h, in air and slow cooled. The doping ions concentration was 1.0 mol%. The study's aim was to obtain implantable metallic materials with improved biocompatibility and antibacterial qualities. The characteristics of the thin films were assessed from the point of view of microstructure, morphology, wetting properties, antibacterial activity and biological response in the presence of amniotic fluid stem cells (AFSC). The results proved that all deposited samples were nanostructured, suggesting a very good antibacterial effect and proving to be suitable supports for cellular adhesion and proliferation. All properties also depended on the doping ion nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...